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Crossover in diffusion equation: Anomalous and normal behaviors
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Ubiquitous phenomena exist in nature where, as time goes on, a crossover is observed between different
diffusion regimes~e.g., anomalous diffusion at early times which becomes normal diffusion at long times, or
the other way around!. In order to focus on such situations we have analyzed particular relevant cases of the

generalized Fokker-Planck equation*dg8t(g8)@]g8r(x,t)#/]tg85*dm8dn8D(m8,n8)@]m8@r(x,t)#n8#/]xm8,
where t(g8) and D(m8,n8) are kernels to be chosen; the choicet(g8)5d(g821) and D(m8,n8)5d(m8
22)d(n821) recovers the normal diffusion equation. We discuss in detail the following cases:~i! a mixture
of the porous medium equation, which is connected with nonextensive statistical mechanics, with the normal
diffusion equation;~ii ! a mixture of the fractional time derivative and normal diffusion equations;~iii ! a
mixture of the fractional space derivative, which is related with Le´vy flights, and normal diffusion equations.
In all three cases a crossover is obtained between anomalous and normal diffusions. In cases~i! and ~iii !, the
less diffusive regime occurs for short times, while at long times the more diffusive regime emerges. The
opposite occurs in case~ii !. The present results could be easily extended to more complex situations~e.g.,
crossover between two, or even more, different anomalous regimes!, and are expected to be useful in the
analysis of phenomena where nonlinear and fractional diffusion equations play an important role. Such appears
to be the case for isolated long-ranged interaction Hamiltonians, which along time can exhibit a crossover from
a longstanding metastable anomalous state to the usual Boltzmann-Gibbs equilibrium one. Another illustration
of such crossover occurs in active intracellular transport.

DOI: 10.1103/PhysRevE.67.031104 PACS number~s!: 82.20.Db, 66.10.Cb, 05.60.2k
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I. INTRODUCTION

Anomalous diffusion has nowadays received a lot of
tention. It is observed in several situations such as in CT
micelles dissolved in salted water@1#, the analysis of heart
beat histograms in a healthy individual@2#, chaotic transport
in laminar fluid flow of a water-glycerol mixture in a rapidl
rotating annulus@3#, subregion laser cooling@4#, particle
chaotic dynamics along the stochastic web associated w
d53 Hamiltonian flow with hexagonal symmetry in a plan
@5#, conservative motion in ad52 periodic potential@6#,
transport of fluid in porous media~see Ref.@7# and refer-
ences therein!, surface growth@7#, and many other interest
ing physical systems.

A common way to classify anomalous diffusion is throu
the time dependence of the mean squared displacem
which typically satisfieŝ (Dx)2&}ts. If s.1, s,1, or s
51, we have superdiffusion, subdiffusion or ‘‘normal’’ dif
fusion, respectively. Deviations froms51 may be obtained
by considering generalizations of the diffusion equation

]r

]t
5

]2r

]x2
, ~1!

where the diffusion constantD is set equal to unit andr
5r(x,t). One such extension is the nonlinear equation u
ally referred to as the porous medium equation@7#

]r

]t
5

]2rn

]x2
. ~2!
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It has been applied to several physical situations such
percolation of gases through porous media (n>2) @8#, thin
saturated regions in porous media (n52) @9#, a standard
solid-on-solid model for surface growth (n53), thin liquid
films spreading under gravity (n54) @10#, among others
@11#. The escape time, or mean first passage time, has
been studied by considering a nonlinear Fokker-Planck eq
tion, leading eventually to a generalization of the Arrhen
law @12#. Also notice that Eq.~2! has been investigated i
connection with nonextensive statistics@13#.

Another example of generalization of Eq.~1! is fractional
diffusion equations, which also have been used to ana
anomalous diffusion and related phenomena. In this dir
tion, we consider a diffusion equation with time fraction
derivative@14#

]gr

]tg
5

]2r

]x2
. ~3!

Another possibility is to investigate a diffusion equation wi
spatial fractional derivative@14#, i.e.,

]r

]t
5

]mr

]xm
. ~4!

These equations can be related, for instance, to continu
time random walk models and generalized Langevin eq
tions. In particular, Eq.~4! describes anomalous diffusion o
the Lévy type ~superdiffusion; see Ref.@15# and references
therein!. It has no finite second moment (^(Dx)2& diverges!.
Let us mention at this point that this divergent feature can
©2003 The American Physical Society04-1
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avoided by using coupled space-time memories as wor
out in Ref.@16#. We address here the case of uncoupled sp
and time memories as contained, for instance, in Eq.~4!.
This divergent behavior also occurs in Eq.~2! for n suffi-
ciently small. An unified discussion of Eq.~2! and Eq.~4!
has been done in Ref.@17# by considering equation]r/]t
5]mrn/]xm.

Each one of the above equations presents one diffu
regime. In contrast, there are cases where more than
diffusion regime occurs. Examples of such situations
Hamiltonian systems with long-range interactions@18,19#,
particle diffusion in a quasi-two-dimensional bacterial ba
@20#, and enhanced diffusion in active intracellular transp
@21#. Physical situations like these motivate us to investig
processes involving distinct diffusive regimes, for instan
cases which are characterized by^(Dx)2&}ts1 for short time
and^(Dx)2&}ts2 for long time. A way to incorporate a set o
diffusive regimes in a single equation without employi
time dependent coefficients, is to consider a composition
volving nonlinear and fractional derivative diffusion equ
tions. In this direction, a quite general frame is to focus
tention on the Fokker-Planck-like equation

E
g1

g2
dg8t~g8!

]g8r

]tg8
5E

m1

m2
dm8E

n1

n2
dn8D~m8,n8!

]m8rn8

]xm8
.

~5!

In the present paper, we study some representative c
of this equation by mixing terms related to normal a
anomalous diffusions. In Sec. II, we analyze Eq.~1! with an
extra nonlinear derivative term. In Sec. III, Eq.~1! with an
additional time fractional derivative is investigated. In th
same section, Eq.~1! with a space fractional derivative i
also analyzed. Finally, we conclude in Sec. IV.

II. NONLINEAR FOKKER-PLANCK EQUATION

In order to mix normal~based on linear equation! and
anomalous~based on nonlinear equation! diffusions, we start
our study by considering, in Eq.~5!, t(g8)5d(g821) and
D(m8,n8)5@D1d(n821)1Dnd(n82n)#d(m822). In this
case, we have the nonlinear equation

]r

]t
5D1

]2r

]x2
1Dn

]2rn

]x2
. ~6!

Of course, we are using in Eq.~5! integration limits that
compriseg851, n851, n85n, andm852. In the following
analysis, we use the initial conditionr(x,0)5d(x), hence
^x&50 (;t). Therefore, we focus on̂x2&, which coincides
with ^(Dx)2&. Notice also that~i! D1.0 andDn50 reduce
Eq. ~6! to the usual diffusion equation, whose solution is
Gaussian and̂x2&}t; ~ii ! for D150 and Dn.0, Eq. ~6!
becomes the porous medium equation and^x2&}t2/(11n).
Next, we address the behavior of^x2& associated with the
solutions of Eq.~6! for short and long times by investigatin
the possibilitiesn.1 andn,1, D1, andnDn being positive
quantities.
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Before considering a general analysis of Eq.~6! based on
numerical calculation, we perform an approximate analyti
investigation. In order to identify the regimes exhibited
the solution of Eq.~6!, we rewrite this equation as

]r

]t
5

]

]x H @D11nDnrn21#
]r

]xJ . ~7!

Thus, if D1 is sufficiently larger thannDnr n21, Eq. ~7!
leads, with good precision, to a diffusion like that corr
sponding to Eq.~1!. For instance, the appropriate solution
Eq. ~6! with n,1 and subject to the initial condition
r(x,0)5d(x) is, for time short enough, the Gaussian

r~x,t !5
e2x2/(4D1t)

~4pD1t !1/2
. ~8!

By short enough time we mean all times such thatD1
@nDn@r(0,t)#n21. However, ast increases,r(0,t) decreases
and this inequality becomes gradually reversed.

If D1!nDnrn21, Eq. ~7! reduces to the porous medium
equation as presented in Eq.~2!. Therefore, for long time, the
solution of Eq.~6! with n,1 may be approximated by theq
Gaussian

r~x,t !5expq@2b~ t !x2#/Z~ t !, ~9!

where

q522n. ~10!

Here, expq(x)[@11(12q)x#1/(12q) if 1 1(12q)x>0 and
expq(x)[0 otherwise. This is theq-exponential function that
naturally emerges in nonextensive statistical mechan
@22,23#. Note that Eq.~9! reduces to a Gaussian in the lim
q→1 and has a long~short! tail behavior forq.1 (q,1).
Moreover,Z(t) andb(t) are given@13# by

Z~ t !

Z~0! S b~ t !

b~0! D
1/2

51 ~11!

andb(t)5$2(32q)@Z(0)(b(0))1/2#q21nDnt%22/(32q).
In general, for short time, the Gaussian (q Gaussian! is

the solution of Eq.~6! to be employed whenq.1 (q,1);
for long time, theq Gaussian~Gaussian! is the solution to be
used whenq.1 (q,1).

In this work, we are mainly interested on the mean squ
displacement whenever it is finite. Thus, from Eq.~6! and
^x2&[*2`

` dxx2r, we verify that

^x2&52D1t12DnE
0

t

d t̄E
2`

`

dx̄@r~ x̄, t̄ !#n, ~12!

where we have employed the normalization conditio
*2`

` dxr51, have exchanged the integral and derivative
dering, as well as used lim

x→6`
x2]r]/]x50 and

lim
x→6`

xr]/]x50 ~d51, n!. Therefore, forn,1, we ob-

tain
4-2
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^x &~ t !'H 1

523q
$2~32q!@Z~0!~b~0!!1/2#q21nDnt%2/(32q) for large t,

~13!
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where the Gaussian~8! and theq Gaussian~9! are respec-
tively employed in Eq.~12! for the cases with small an
large t. For n.1, the calculation is similar to that just dis
cussed forn,1. In this case, as time increases, we fi
observe anomalous~sub! diffusion and later on normal one

If necessary, the previous calculation can be improved
considering corrections for Eq.~8!. In this direction, we can
express Eq.~6!, with the initial conditionr(x,0)5d(x), in
an integral form

r~x,t !5
e2x2/(4D1t)

~4pD1t !1/2
1DnE

0

t

d t̄

3E
2`

`

dx̄K~x2 x̄,t2 t̄ !@r~ x̄, t̄ !#n, ~14!

where

K~x2 x̄,t2 t̄ !5
]2

] x̄2 H e2(x2 x̄)2/[4D1(t2 t̄ )]

@4pD1~ t2 t̄ !#1/2 J . ~15!

We may recursively solve this equation in order to obt
an approximate solution for short time. For instance, by c
sideringn,1 and the short time regime, the Fourier tran
form of Eq. ~14! can be approximated, up to the linear co
tribution onDn , by

F$r~x,t !%5e2D1tk2
Dn~4pD1!(12n)/2k2

n1/2

3e2D1tk2S n

~12n!D1k2D (1/2)(32n)

3GS 3

2
2

n

2
,
12n

n
D1tk2D , ~16!

whereF$•••%[*2`
` dxeikx

••• is the Fourier transform and
G(n,x)5*0

xdte2ttn21 is the incompleteG function.
A full investigation can be performed if, on top of th

previous results, we implement a numerical approach.
fact, a careful numerical analysis confirms that the appro
mate analytical results are accurate. In particular, a sim
estimation of thecrossover time tc may be obtained by im-
posing the approximate equality^x2&D1 ,Dn50'^x2&D150,Dn

.
In Fig. 1, we illustrate the crossover through numerical
lutions. Indeed, we verify the presence of two regimes
^x2&. In contrast with Fig.~1! whereD1,Dn , we present
the situation corresponding toD1.Dn in Fig. 2. Note that
the crossover times are transformed one into the othe
03110
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interchanging theD1 and Dn values. Our main conclusion
concerning Eq.~6! can be summarized as follows:

^x2&~ t !;H t2/(11n) for t!tc

t for t@tc
~17!

whenn.1 and

^x2&~ t !;H t for t!tc

t2/(11n) for t@tc
~18!

whenn,1 for

tc[@„1/~523q!…„2~32q!

3@Z~0!„b~0!…1/2#q21nDn…
2/(32q)# (n21)/(11n)

@ tc was obtained assuming that the limit case in Eq.~13!
coincides att5tc]. We emphasize that the long timet2/(11n)

result for then,1 case can be employed only ifn.1/3;

FIG. 1. Time evolution of̂ (Dx)2& versust̃ , where t̃ 5Dnt, for
the n51/2 ~superdiffusive! case, forDn50.5 and typical values of
D1.
4-3
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indeed,^x2& diverges forn<1/3. For the rangen<1/3, we
can employ the procedure used in the second part of Sec
i.e., to analyze 1/@r(0,t)#2 instead of̂ x2&. In this n region,
the short time behavior is governed by Gaussian regi
whereas an anomalous, Le´vy-like, superdiffusive regime
dominates the long time region.

III. FRACTIONAL FOKKER-PLANCK EQUATION

We will now focus on the other two particular situation
of Eq. ~5! where, instead of nonlinearity, we shall introdu
fractional derivatives. We first address time fractional deri
tives, and then space fractional derivatives. In both cases
mix normal diffusion with this type of anomalous one, a
verify once again the existence of a crossover.

A. Time fractional derivative

We consider the particular case of Eq.~5!, wheret(g8)
5t1d(g821)1tgd(g82g) and D(m8,n8)5D1d(n8
21)d(m822). Thus, the generalized Fokker-Planck equ
tion ~5! reduces to

t1

]r

]t
1tg

]gr

]tg
5D1

]2r

]x2
. ~19!

Theg52 particular case precisely is the so called Cattane
equation@26#, who introduced the term]2r/]t2 in order to

FIG. 2. Time evolution of̂ (Dx)2& versust̃ , where t̃ 5Dnt, for
the n52 ~subdiffusive! case, forDn51 and typical values ofD1.
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II,

e,

-
e

-

’s

take into account the finite velocity of the diffusing particle
In the more general form appearing in Eq.~19!, it emerged in
a discussion of continuous time random walk@27#.

As in the preceding section, we are interested in the ti
behavior of the mean square displacement. With this aim,
use Eq.~19! as well as the assumptions immediately d
scribed below Eq.~12! and obtain

t1

d^x2&
dt

1tg

dg^x2&

dtg
52D1 . ~20!

From now on we shall explicitly refer to Caputo’s fraction
derivative@25#, defined as follows:

dg f ~u!

dug
5H f (n)~u! if g5nPN

1

G~n2g!
E

0

` f (n)~v !

~u2v !g112n
dv if n21,g,n,

~21!

with f (n)(u)5dnf (u)/dun.
Note that the conservation of*2`

` dxr enables us to con
sider *2`

` dxr51 for arbitrary time and consequentl
(dkdtk)*2`

` dxr50 for k>1. The last condition can be ac
complished if the initial condition]kr(x,0)/]tk50 for k
>1 is employed. This condition andr(x,0)5d(x) lead to
^x2&(0)50 anddk^x2&(0)/dtk50 for k>1. We remark that
our assumptions concerning the initial conditions are co
pletely compatible witĥ x2&}ts with s.0. These initial
conditions for^x2& are particularly useful when solving Eq
~19! via Laplace transform, since we can use the Capu
formula

LH dg f ~u!

dug J 5sgL$ f ~u!%2 (
k50

n21

sg212kf (k)~01!, ~22!

where L$•••%5*0
`dte2st

••• is the Laplace transform an
n21,g<n. Within the previous initial conditions, the
Laplace transform of Eq.~20! yields

t1sL$^x2&%1tgsgL$^x2&%5
2D1

s
. ~23!

To solve Eq.~23! it is convenient to fix theg range. We
initially set 1,g,2. In this case, the mean square displa
ment can be written in terms of an inverse Laplace tra
form:

^x2&~ t !5L 21H 2D1

tgsg11

1

11t1s12g/tg
J . ~24!

To calculate this inverse Laplace transform we employ
convolution theorem with

LH 1

sg11J 5
tg

G~g11!
~25!

and
4-4
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LH 1

11t1s12g/tg
J 5 (

k50

` S 2
t1

tg
D k tn(g21)21

G@n~g21!#
. ~26!

Thus, the exact solution of Eq.~20! with 1,g,2, and sub-
ject to the initial conditionŝ x2&(0)50 and d^x2&(0)/dt
50, is

^x2&~ t !5
2D1

tgG~g11! (
k50

` S 2
t1

tg
D k 1

G@k~g21!#

3E
0

t

d t̄~ t2 t̄ !g t̄ k(g21)21

52D1

tg

tg
Eg21,g11S 2

t1tg21

tg
D , ~27!

where

Ea,b~x!5 (
k50

`
xk

G~ak1b!
~28!

is the generalized Mittag-Leffler function@24#.
From an analysis of this function, we verify that the me

square displacement presents two characteristic regimes
erned by two power laws, one for smallt and the other for
large t. They are given by

^x2&~ t !'H @2D1 /„tgG~g11!…#tg for small t

@2D1 /t1#t for large t.
~29!

A similar calculation can be performed for the case 0,g
,1, where we only need to specify the initial conditio
^x2&(0). Theresult is

^x2&~ t !'H @2D1 /t1#t for small t

@2D1 /„tgG~g11!…#tg for large t.
~30!

We pay attention onto the fact that the present results,
~29! and Eq.~30!, are in agreement with those obtained
Ref. @27#. Note also that the power laws~29! and ~30! can,
alternatively, be obtained by considering only the appropr
terms in Eq.~19!. For instance, when 1,g,2, we neglect
the termtg]gr/]tg for short time, whereas we neglect th
term t1]r/]t for long time.

B. Space fractional derivative

We consider now the fractional diffusion equation

]r

]t
5D1

]2r

]x2
1Dm

]mr

]xm
, ~31!

where D1 and Dm being the diffusion coefficients and
,m,2 ~if m52, the usual diffusion is recovered!. This
equation is obtained from Eq.~5! if we take t(g8)5d(g8
21) and D(m8,n8)5d(n821)@D1d(m822)1Dmd(m8
03110
ov-

q.

te

2m)#. For the space fractional derivative, we use the Ri
operator@14#, hence, by employing the Fourier transform, w
obtain,

FH ]m f ~x!

]xm J [2ukumF$ f ~x!% ~32!

analysis of the times. Thus, from Eq.~31!, we obtain

dF$r~x,t !%

dt
52~D1k21Dmukum!F$r~x,t !% ~33!

and consequently F$r(x,t)%5F$r(x,0)%exp(2D2k
2t)exp

(2Dmukumt). Furthemore, by using the convolution theore
and the initial conditionr(x,0)5d(x), we verify that an
exact solution for Eq.~31! is given by

r~x,t !5E
2`

`

dx̄
e2(x2 x̄)2/(4D1t)

~4pD1t !1/2
Lm~ ux̄u,Dmt !, ~34!

where

Lm~ uxu,t !5E
0

`dk

p
cos~kx!e2ukumt ~35!

is the Lévy distribution@28#. Note that Eq.~34! reduces to a
Gaussian~Lévy! distribution if Dm50 (D150).

To characterize the anomalous diffusion described by
~31! or alternatively by Eq.~34!, we cannot emploŷ(Dx)2&
since it diverges. To overcome this difficulty we emplo
1/@r(0,t)#2 instead of̂ (Dx)2&. We notice that this approac
to investigate Eq.~31! is close to analyzing the time depen
dence of^(Dx)2& since in the usual case (Dm50) r(0,t)
essentially contains the same information displayed by^x2&.
In fact, we haver(0,t)}1/A^x2&}1/At when Dm50 and
r(x,0)5d(x). Thus, in the following discussion, we us
@1/r(0,t)#2 instead of^x2& in order to analyze, in a unified
way, both cases with finite or divergent second moment.

Before giving the analysis forr(x,t) with arbitrarym, we
focus attention on the simplest case, the Lorentzian onem
51). This choice enables us to illustrate our results in
simple way since Eq.~34! can be written in terms of the erro
function Erf(x). Indeed, we have

r~0,t !5E
2`

`

dx̄
e2 x̄2/(4D1t)

~4pD1t !1/2

1

Dmpt

1

11~ x̄/~Dmt !2

5
1

A4pD1t
e(Dm

2 t)/(4D1)H 12ErfF t1/2

2 S Dm
2

D1
D 1/2G J ,

~36!

leading tor(0,t);1/At for shortt andr(0,t);1/t for long t.
In the general case (m,2), we employ the power serie
expansion for cos(kx) in Eq. ~35! and perform the integra
tions in x̄ andk in Eq. ~34! to obtain
4-5
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FIG. 3. Time evolution of
@1/r(0,t)#2 and of its short and
long time asymptotic regimes, fo
typical values ofm for D15Dm

51: ~a! m51/2, and~b! m53/2.
1
` GS 1

m
1

2

m
nD D1

n

ic

1
` GS 1

m
1

2

m
nD D1

n

ge
r~x,t !5
mp~Dmt !1/m (

n50
~21!n

G~11n! S
Dm

2/mD
3t [12(2/m)]n

1F1S 2n,
1

2
;2

x2

4D1t D , ~37!

where 1F1(a,b;x) is the Kummer confluent hypergeometr
function @24#.

By taking the particular casex50 in Eq. ~37!, we verify
that
03110
r~0,t !5
mp~Dmt !1/m (

n50
~21!n

G~11n! S
Dm

2/mD
3t [12(2/m)]n. ~38!

A detailed analysis of this expression for small and lar
times leads to the result we are looking for, namely,

S 1

r~0,t ! D
2

;H t for small t

t2/m for large t.
~39!
4-6
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These results from Eq.~34! can be interpreted as follows
For smallt, the normal diffusion is dominant, i.e.,r(x,t) is
approximately governed by]r/]t5D1]2r/]x2 @Eq. ~31!
with Dm50]. For large t, r(x,t) approximately obeys
]r/]t5Dm]mr/]xm @Eq. ~31! with D150], i.e., the anoma-
lous diffusion is fully developed. Alternatively, from the so
lutions of these equations, results~39! are imediately recov-
ered since

r~0,t !;L m̄~0,D m̄t !5E
0

`dk

p
e2ukum̄Dm̄t5am̄t21/m̄, ~40!

wheream̄5G(111/m̄)(D m̄)21/m̄/p, m̄52 for small time and
m̄5m for large time. A set of typical crossover situationsm
51/2 and 3/2 are illustrated in Fig. 3. Note also from Fig
that an estimative of the characteristic crossover timetc may
be obtained by imposinga2tc

21/25amtc
21/m , i.e., tc

5(a2 /am)(22m)/(2m).

IV. SUMMARY AND CONCLUSIONS

We have analyzed diffusion equations that deviate fr
the usual one through the addition of extra terms, specific
either a nonlinear contribution or time~space! fractional de-
rivatives. We focused on the mean square displacem
@^(Dx)2&# when it is finite. On the other hand, when^(Dx)2&
is not finite, the diffusion field at the origin@r(0,t)# was
investigated. For the nonlinear diffusion equation, wh
contains the usual diffusion and the porous medium one
limiting cases, two regimes were identified. One of them
related to the usual diffusion and the other to the anoma
one. The dynamics imposed by the nonlinear equation
such that the long time regime diffuses faster than the s
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ey

et

en

us

-
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time one. Moreover, the same conclusion is obtained w
the mean square displacement is not finite.

This feature is also verified for the space fractional diff
sion equation, in fact related to Le´vy flights. More specifi-
cally, a normal decay is obtained forr(0,t) for short time,
and a Lévy one for long time.

This scenario is inverted in the case of time fraction
derivatives. Indeed, the long time regime diffuses slow
than the short time one.

Summarizing, in our investigation,̂(Dx)2& reduces to
^x2& and its relevant time behavior is essentially the same
that of@1/r(0,t)#2. Indeed, the asymptotic solutions for sho
and long times behave asr(x,t);1/F(t)P(x/F(t)) and
consequentlŷx2&}1/@r(0,t)#2. Notice, however, thatr(0,t)
is always defined, which is not necessarily the case for^x2&.
Thus, our conclusions can be put in a general scheme
follows:

S 1

r~0,t ! D
2

;H ts1 for small t

ts2 for large t,
~41!

where~i! s1,s2 for diffusion equation including a nonlin
ear term@like Eq. ~6!# or a space fractional derivative term
@like Eq. ~31!#, and~ii ! s1.s2 for diffusion equation includ-
ing a time fractional derivative term@like Eq. ~19!#. We hope
that the analysis presented here can be useful in the dis
sion of phenomena involving anomalous diffusion with tw
or more regimes, mainly when nonlinear and fractional d
fusion equations may play an important role.
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